Armstrong group

Department of Chemistry, University of Oxford

  • Exploiting Electrode Nanoconfinement to Investigate the Catalytic Properties of Isocitrate Dehydrogenase (IDH1) and a Cancer-Associated Variant

    Ryan A. Herold, Raphael Reinbold, Clare F. Megarity, Martine I. Abboud, Christopher J. Schofield, Fraser A. Armstrong
    ACS The Journal of Physical Chemistry Letters [Link]

  • Exploiting Bidirectional Electrocatalysis by a Nanoconfined Enzyme Cascade to Drive and Control Enantioselective Reactions

    Lei Wan, Rachel S. Heath, Clare F. Megarity, Adam J. Sills, Ryan A. Herold, Nicholas J. Turner, Fraser A. Armstrong
    ACS Catalysis [Link]

  • Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance

    Rhiannon M. Evans, Natalie Krahn, Bonnie J. Murphy, Harrison Lee, Fraser A. Armstrong, Dieter Söll
    PNAS [Link]

  • The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades

    Giorgio Morello, Clare F. Megarity, Fraser A. Armstrong
    Nature Communications [Link]

  • Electron flow between the worlds of Marcus and Warburg

    Clare F. Megarity, Bhavin Siritanaratkula, Ryan A. Herold, Giorgio Morello, Fraser A. Armstrong
    J. Chem. Phys. [Link]

  • Cascade biocatalysis in electrode nanopores

    Clare F. Megarity, Fraser A. Armstrong

    in Roadmap: Nanotechnology for catalysis and solar energy conversion

    Banin et al
    Nanotechnology [Link]

  • Progress in Scaling up and Streamlining a Nanoconfined, Enzyme‐Catalyzed Electrochemical Nicotinamide Recycling System for Biocatalytic Synthesis

    Beichen Cheng, Lei Wan, Fraser A. Armstrong
    ChemElectroChem [Link]

  • Aerobic Photocatalytic H2 Production by a [NiFe] Hydrogenase Engineered to Place a Silver Nanocluster in the Electron Relay

    Liyun Zhang, Giorgio Morello, Stephen B. Carr, Fraser A. Armstrong
    J. Am. Chem. Soc [Link]

  • Efficient Electrocatalytic CO2 Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H2 Production

    Giorgio Morello, Bhavin Siritanaratkul, Clare F. Megarity, Fraser A. Armstrong
    ACS Catalysis [Link]

  • Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling

    Clare F. Megarity, Bhavin Siritanaratkul, Beichen Cheng, Giorgio Morello, Lei Wan, Adam J. Sills, Rachel S. Heath, Nicholas J. Turner, Fraser A. Armstrong
    ChemCatChem [Link]

  • Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores

    Lei Wan, Rachel S. Heath, Bhavin Siritanaratkul, Clare F. Megarity, Adam J. Sills, Matthew P. Thompson, Nicholas J. Turner, Fraser A. Armstrong
    Green Chemistry [Link]

  • Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores

    Clare F. Megarity, Bhavin Siritanaratkul, Rachel S. Heath, Lei Wan, Giorgio Morello, Sarah R. FitzPatrick, Rosalind L. Booth, Adam J. Sills, Alexander W. Robertson, Jamie H. Warner, Nicholas J. Turner, Fraser A. Armstrong
    Angewandte Chemie [Link]

  • The value of enzymes in solar fuels research – efficient electrocatalysts through evolution

    Rhiannon M. Evans, Bhavin Siritanaratkul, Clare F. Megarity, Kavita Pandey, Thomas F. Esterle, Selina Badiani and Fraser A. Armstrong
    Chem. Soc. Rev. [Link]

  • X-ray structural, functional and computational studies of the O2-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe–4S] cluster

    A. Volbeda, J. M. Mouesca, C. Darnault, M. M. Roessler, A. Parkin, F. A. Armstrong and J. C. Fontecilla-Camps
    Chem. Commun. [Link]

  • Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O-2-Tolerant [NiFe]-Hydrogenase

    Rhiannon M. Evans, Philip A. Ash, Stephen E. Beaton, Emily J. Brooke, Kylie A. Vincent, Stephen B. Carr and Fraser A. Armstrong
    J. Am. Chem. Soc [Link]

  • Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters

    Liyun Zhang, Stephen E. Beaton, Stephen B. Carr and Fraser A. Armstrong
    Energy Environ. Sci. [Link]

  • The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping

    Stephen E. Beaton, Rhiannon M. Evans, Alexander J. Finney, Ciaran M. Lamont, Fraser A. Armstrong, Frank Sargent, Stephen B. Carr
    Biochemical Journal [Link]

  • Fast and Selective Photoreduction of CO2 to CO Catalyzed by a Complex of Carbon Monoxide Dehydrogenase, TiO2, and Ag Nanoclusters

    Liyun Zhang, Mehmet Can, Stephen W. Ragsdale, and Fraser A. Armstrong
    ACS Catal. [Link]

  • A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring

    L. Wan, C. F. Megarity, B. Siritanaratkul and F. A. Armstrong
    Chem. Commun. [Link]

  • Protein Film Electrochemistry of Iron-Sulfur Enzymes

    Fraser A.Armstrong, Rhiannon M.Evans, Clare F. Megarity
    Methods in Enzymology [Link]

  • The radical-SAM enzyme Viperin catalyzes reductive addition of a 5'-deoxyadenosyl radical to UDP-glucose in vitro

    K. H. Ebrahimi, S. B. Carr, J. McCullagh, J. Wickens, N. H. Rees, J. Cantley and F. A. Armstrong
    FEBS Lett. [Link]

  • Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases

    Kavita Pandey, Shams T. A. Islam, Thomas Happe and Fraser A. Armstrong
    PNAS [Link]

  • Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis

    Bhavin Siritanaratkul, Clare F. Megarity, Thomas G. Roberts, Thomas O. M. Samuels, Martin Winkler, Jamie H. Warner, Thomas Happe and Fraser A. Armstrong
    Chem. Sci. [Link]

  • Importance of the active site “canopy” residues in an O2-tolerant [NiFe]-hydrogenase

    Emily J. Brooke, Rhiannon M. Evans, Shams T. A. Islam, Gerri M. Roberts, Sara A. M. Wehlin, Stephen B. Carr, Simon E. V. Phillips, and Fraser A. Armstrong
    Biochemistry [Link]

  • Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal

    P. A. Ash, S. B. Carr, H. A. Reeve, A. Skorupskaite, J. S. Rowbotham, R. Shutt, M. D. Frogley, R. M. Evans, G. Cinque, F. A. Armstrong and K. A. Vincent
    Chem. Commun. [Link]

  • Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases

    Clare F. Megarity, Julian Esselborn, Suzannah V. Hexter, Florian Wittkamp, Ulf-Peter Apfel, Thomas Happe, and Fraser A. Armstrong
    J. Am. Chem. Soc. [Link]

  • Hydrogen activation by [NiFe]-hydrogenases

    Stephen B. Carr, Rhiannon M. Evans, Emily J. Brooke, Sara A.M. Wehlin, Elena Nomerotskaia, Frank Sargent, Fraser A. Armstrong, Simon E.V. Phillips
    Biochemical Society Transactions [Link]

  • Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry

    Fraser A. Armstrong, Rhiannon M. Evans, Suzannah V. Hexter, Bonnie J. Murphy, Maxie M. Roessler, and Philip Wulff
    Acc. Chem. Res. [Link]

  • How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Philip Wulff, Claudia Thomas, Frank Sargent, Fraser A. Armstrong
    J. Biol. Inorg. Chem. [Link]

  • Catalysis of solar hydrogen production by iron atoms on the surface of Fe-doped silicon carbide

    Zhijiang Wang and Fraser A. Armstrong
    Catal. Sci. Technol. [Link]

  • Electrocatalysis by H2-O2membrane-free fuel cell enzymes in aqueous microenvironments confined by an ionic liquid

    Yiduo Wang, Thomas F. Esterle and Fraser A. Armstrong
    RSC Adv. [Link]

  • Selective, light-driven enzymatic dehalogenations of organic compounds

    Bhavin Siritanaratkul, Shams T. A. Islam, Torsten Schubert, Cindy Kunze, Tobias Goris, Gabriele Diekert and Fraser A. Armstrong
    RSC Adv. [Link]

  • Mechanism of hydrogen activation by [NiFe] hydrogenases

    Rhiannon M Evans, Emily J Brooke, Sara A M Wehlin, Elena Nomerotskaia, Frank Sargent, Stephen B Carr, Simon E V Phillips and Fraser A Armstrong
    Nature Chem. Biol. [Link]

  • 2015

  • “How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by 13C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers” A. Bachmeier, J. Esselborn, S. V. Hexter, T. Kramer, K. Klein, T. Happe, J. E. McGrady, W. K. Myers, F. A. Armstrong. J. Am. Chem. Soc. 137 (16) 5381?5389 (2015). [PDF]
  • “Solar-driven proton and carbon dioxide reduction to fuels - lessons from metalloenzymes” A. Bachmeier, F. A. Armstrong. Curr. Opin. Chem. Biol. 25, 141-151 (2015) [PDF]
  • “Structural differences of oxidized iron-sulfur and nickel-iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy” K.G.V. Sigfridsson, N. Leidel, O. Sanganas, P. Chernev, O. Lenz, K. Yoon, H. Nishihara, A. Parkin, 3, Fraser A. Armstrong, S. Dementin, M. Rousset, A. L. De Lacey, M. Haumann. Biochim. Biophys. Acta 1847 (2) 162-70 (2015) [PDF]
  • “Pushing the limits for enzyme-based membrane-less hydrogen fuel cells - achieving useful power and stability” X. Lang, F. A. Armstrong. RSC Adv 5, 3649-3656 (2015) [PDF]
  • 2014

  • “Selective Visible-Light-Driven CO2 Reduction on a p-Type Dye-Sensitized NiO Photocathode” A. Bachmeier, S. Hall, R. W. Ragsdale, F. A. Armstrong. J. Am. Chem. Soc. 136 (39) 13518?13521 (2014) [PDF]
  • “Bacterial formate hydrogenlyase complex”J. S. McDowall, B. J. Murphy, M. Haumann, T. Palmera, F. A. Armstrong, F. Sargent. Proc. Natl. Acad. Sci. U.S.A. 111 (38) E3948-E3956 (2014) [PDF]
  • “A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst” A. Bachmeier, B. J. Murphy, F. A. Armstrong. J. Am. Chem. Soc. 136 (37) 12876-12879 (2014) [PDF]
  • “Unusual Reaction of [NiFe]-Hydrogenases with Cyanide” S. V. Hexter , M. W. Chung , K. A. Vincent, F. A. Armstrong. J. Am. Chem. Soc. 136 (29) 10470-10477 (2014) [PDF]
  • “A unified model for surface electrocatalysis based on observations with enzymes” S. V. Hexter, T. F. Esterle, F. A. Armstrong. Phys. Chem. Chem. Phys. 16, 11822-11833 (2014) [PDF]
  • “How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases” P.Wulff, C. C. Day, F. Sargent, F. A. Armstrong. Proc. Natl. Acad. Sci. U.S.A. 111 (18) 6606-6611 (2014) [PDF]
  • “Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase” C. Mehmet, F. A. Armstrong, R. W. Ragsdale. Chem. Rev. 114 (8) 4149?4174 (2014) [PDF]
  • “Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer” B. J. Murphy, F. Sargent, F. A. Armstrong. Energy Environ. Sci. 7 (4) 1426-1433 (2014) [PDF]
  • 2013

  • “How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H2 Production and CO2 Reduction” A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary, F. A. Armstrong. J. Am. Chem. Soc. 135 (40) 15026-15032 (2013). [PDF]
  • “Investigations of two Bidirectional Carbon Monoxide Dehydrogenases from Carboxydothermus hydrogenoformans by Protein Film Electrochemistry” V. C. C. Wang, S. W. Ragsdale, F. A. Armstrong. Chem. Bio. Chem. 14 (14) 1845-1851 (2013). [PDF]
  • “Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2 air mixtures” L. Xu, F. A. Armstrong. Energy Environ. Sci. 6 (7) 2166-2171 (2013). [PDF]
  • “Principles of Sustained Enzymatic Hydrogen Oxidation in the Presence of Oxygen - The Crucial Influence of High Potential Fe-S Clusters in the Electron Relay of [NiFe]-Hydrogenases” R. M. Evans, A. Parkin, M. M. Roessler, B. J. Murphy, H. Adamson, M. J. Lukey, F. Sargent, A. Volbeda, J. C. Fontecilla-Camps, F. A. Armstrong. J. Am. Chem. Soc. 135 (7) 2694-2707 (2013). [PDF]
  • “A Unified Electrocatalytic Description of the Action of Inhibitors of Nickel Carbon Monoxide Dehydrogenase” V. C. C. Wang, M. Can, E. Pierce, S. W. Ragsdale, F. A. Armstrong. J. Am. Chem. Soc. 135 (6) 2198-2206 (2013). [PDF]
  • “Crystal Structure of the O2-Tolerant Membrane-Bound Hydrogenase 1 from Escherichia coli in Complex with Its Cognate Cytochrome b” A. Volbeda, C. Damault, A Parkin, F. Sargent, F. A. Armstrong, J. C. Fontecilla-Camps. Structure 21 (1) 184-190 (2013). [PDF]
  • “Copying Biology’s Ways with Hydrogen” F. A. Armstrong. Science 339 (6120) 658-659 (2013). [PDF]
  • “Energy and environment policy case for a global project on artificial photosynthesis” T. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. D. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring. Energy Environ. Sci. 6 (3) 695-698 (2013). [PDF]
  • 2012

  • “X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli” A. Volbeda, P. Amara, C. Darnault, J. Mouesca, A. Parkin, M. M. Roessler; F. A. Armstrong, J. Fontecilla-Camps. Proc. Natl. Acad. Sci. USA., 109 (14), 5305-5310 (2012). [PDF]
  • “Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals” Y. S. Chaudhary, T. Woolerton, C. S. Allen, J. H. Warner, E. Pierce, S. W. Ragsdale, F. A. Armstrong. Chem. Commun. 48, 58-60 (2012). [PDF]
  • “Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases” S. V. Hexter, F. Grey, T. Happe, V. Climent, F. A. Armstrong. Proc. Natl. Acad. Sci. USA. 109 (29) 11516-11521 (2012). [PDF]
  • “Enzymes and bio-inspired electrocatalysts in solar fuel devices” T. W. Woolerton, S. Sheard, Y. S. Chaudhary, F. A. Armstrong. Energy Environ. Sci. 5 (6) 7470-7490 (2012). [PDF]
  • “Inhibition of [FeFe]-Hydrogenases by Formaldehyde and Wider Mechanistic Implications for Biohydrogen Activation” C. E. Foster, T. Kramer, A. F. Wait, A. Parkin, D. P. Jennings, T. Happe, J. E. McGrady, F. A. Armstrong.J. Am. Chem. Soc. 134 (17) 7553-7557 (2012). [PDF]
  • “EPR Spectroscopic Studies of the Fe-S Clusters in the O2-Tolerant [NiFe]-Hydrogenase Hyd-1 from Escherichia coli and Characterization of the Unique [4Fe-3S] Cluster by HYSCORE” M. M. Roessler, R. M. Evans, R. A. Davies, J. Harmer, F. A. Armstrong.J. Am. Chem. Soc. 134 (37) 15581-15594 (2012). [PDF]
  • “Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures” S. Krishnan, F. A. Armstrong.Chem. Sci. 3 (4) 1015-1023 (2012). [PDF]
  • “Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases” P, Knoerzer, A, Silakov, C. E. Foster, F. A. Armstrong, W. Lubitz, T. Happe.J. Biol. Chem. 287 (2) 1489-1499 (2012). [PDF]
  • 2011

  • “Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster” M. J. Lukey, M. M. Roessler, A. Parkin, R. M. Evans, R. A. Davies, O. Lenz, B. Friedrich, F. Sargent and F. A. Armstrong. J. Am. Chem. Soc., 133 (42), 16881-16892 (2011). [PDF]
  • “A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase” T. Goris, A. F. Wait, M. Saggu, J. Fritsch, N. Heidary, M. Stein, I. Zebger, F. Lendzian, F. A. Armstrong, B. Friedrich and O. Lenz. Nat. Chem. Biol., 7, 310-318 (2011). [PDF]
  • “Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes” F. A. Armstrong and J. Hirst. Proc. Natl. Acad. Sci. USA., 108 (34), 14049 -14055 (2011). [PDF]
  • “How salmonella oxidises H2 under aerobic conditions” A. Parkin, L. Bowman, M. M. Roessler, R.A. Davies, T. Palmer, F. A. Armstrong and F. Sargent. FEBS. Lett., (2011). [PDF]
  • “CO2 photoreduction at enzyme-modified metal oxide nanoparticles.” T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale and F. A. Armstrong. Energy Environ. Sci., 4, 2393-2399 (2011). [PDF]
  • “Formaldehyde-A Rapid and Reversible Inhibitor of Hydrogen Production by [FeFe]-Hydrogenases” A. F. Wait, C. Brandmayr, S. S. Stripp, C. Cavazza, J. C. Fontecilla-Camps, T. Happe and F. A. Armstrong. J. Am. Chem. Soc., 133 (5), 1282-1285 (2011). [PDF]
  • 2010

  • “Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light.” T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale and F. A. Armstrong. J. Am. Chem. Soc., 132 (7), 2132-2133 (2010). [PDF]
  • “Characteristics of Enzyme-Based Hydrogen Fuel Cells Using an Oxygen-Tolerant Hydrogenase as the Anodic Catalyst” A. F. Wait, A. Parkin, G. M. Morley, L. dos Santos and F. A. Armstrong. J. Am. Chem. Soc., 114 (27), 12003-12009 (2010). [PDF]
  • “How Escherichia coli is equipped to oxidize hydrogen under different redox conditions” M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer, T. Palmer, F. Sargent, and F. A. Armstrong. J. Biol. Chem., 285, 3928-3938 (2010). [PDF]
  • “Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance” M. M. Roessler, M. S. King, A. J. Robinson, F. A. Armstrong, J. Harmer and J. Hirst Proc. Natl. Acad. Sco. USA., 107 (5), 1930-1935 (2010). [PDF]
  • 2009

  • “How oxygen attacks FeFe hydrogenases from photosynthetic organisms” S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, and T. Happe Proc. Natl. Acad. Sci. USA, 106 (41) 17331-17336 (2009). [PDF]
  • “A Kinetic and Thermodynamic Understanding of O2 Tolerance in [NiFe]-Hydrogenases.” J.A. Cracknell, A.F. Wait, O. Lenz, B. Friedrich and F.A. Armstrong. Proc. Natl. Acad. Sci., 106 (49) 20681-20686 (2009). [PDF]
  • “Visible Light-Driven H2 Production by Hydrogenases Attached to Dye-Sensitized TiO2 Nanoparticles.” E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong. J. Am. Chem. Soc., 131 (51) 18457-18466 (2009). [PDF]
  • “Water-Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets.” O. Lazarus, T.W. Woolerton, A. Parkin, M.J. Lukey, E.Reisner, J.Seravalli, E.Pierce, S.W. Ragsdale, F. Sargent and F.A. Armstrong. J. Am. Chem. Soc., 131, 40, 14154-14155 (2009). [PDF]
  • “Catalytic Electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and Demonstration of its Suitability for Visible-Light Driven H2 Production.” E. Reisner, J.C. Fontecilla-Camps and F.A. Armstrong. Chem. Commun., 5, 550-552 (2009). [PDF]
  • “Oxygen-Tolerant H2 Oxidation by Membrane-Bound [NiFe] Hydrogenases of Ralstonia Species: Coping with Low Level H2 in Air.” M. Ludwig, J.A. Cracknell, K.A. Vincent, F.A. Armstrong and O. Lenz. J. Biol. Chem., 284(1), 465-477 (2009). [PDF]
  • “Dynamic Electrochemical Investigations of Hydrogen Oxidation and Production by Enzymes and Implications for Future Technology.” F.A. Armstrong, N.A. Belsey, J.A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K.A. Vincent and A.F. Wait. Chem. Soc. Rev., 38(1), 36-51 (2009). [PDF]
  • 2008

  • “Hydrogen Production under Aerobic Conditions by Membrane-Bound Hydrogenases from Ralstonia Species.” G. Goldet, A.F. Wait, J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B. Friedrich and F.A. Armstrong. J. Am. Chem. Soc. 130(33), 11106-11113 (2008). [PDF]
  • “Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis.” J.A. Cracknell, K.A. Vincent and F.A. Armstrong. Chem. Rev. 108(7), 2439-2461 (2008). [PDF]
  • “The Difference a Se Makes? Oxygen-Tolerant Hydrogen Production by the [NiFeSe]-Hydrogenase from Desulfomicrobium baculatum.” A. Parkin, G. Goldet, C. Cavazza, J.C. Fontecilla-Camps and F.A. Armstrong. J. Am. Chem. Soc. 130(40), 13410-13416 (2008). [PDF]
  • “A natural choice for activating hydrogen.” F. Armstrong and J.C. Fontecilla-Camps. Science 321(5888), 498-499 (2008). [PDF]
  • “Enzymatic Oxidation of H2 in Atmospheric O2: The Electrochemistry of Energy Generation from Trace H2 by Aerobic Microorganisms.” J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B. Friedrich and F.A. Armstrong. J. Am. Chem. Soc. 130(2), 424-425 (2008). [PDF]
  • “Why did nature choose manganese to make oxygen?” F.A. Armstrong. Phil. Trans. R. Soc. B 363(1494), 1263-1270 (2008). [PDF]
  • 2007

  • Energy … beyond oil. Edited by F. Armstrong and K. Blundell. Oxford University Press: Oxford (2007). [Link]
  • “Enzymatic catalysis on conducting graphite particles.” K.A. Vincent, X. Li, C.F. Blanford, N.A. Belsey, J.H. Weiner and F.A. Armstrong. Nat. Chem. Biol. 3(12), 761-762 (2007).
  • “Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation.” H.J. Wijma, L.J.C. Jeuken, M.P. Verbeet, F.A. Armstrong and G.W. Canters. J. Am. Chem. Soc. 129(27), 8557-8565 (2007). [PDF]
  • “Investigating and exploiting the electrocatalytic properties of hydrogenases.” K.A. Vincent, A. Parkin and F.A. Armstrong. Chem. Rev. 107(10), 4366-4413 (2007). [PDF]
  • “Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode.” A. Parkin, J. Seravalli, K.A. Vincent, S.W. Ragsdale and F.A. Armstrong. J. Am. Chem. Soc. 129(34), 10328-10329 (2007). [PDF]
  • “A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface.” C.F. Blanford, R.S. Heath and F.A. Armstrong. Chem. Commun. (17), 1710-1712 (2007). [PDF]
  • 2006

  • “A Random-sequential Mechanism for Nitrite Binding and Active Site Reduction in Copper-containing Nitrite Reductase.” H.J. Wijma, L.J.C. Jeuken, M.P. Verbeet, F.A. Armstrong and G.W. Canters. J. Biol. Chem. 281(24), 16340-16346 (2006). [PDF]
  • “Electricity from low-level H2 in still air – an ultimate test for an oxygen tolerant hydrogenase.” K.A. Vincent, J.A. Cracknell, J.R. Clark, M. Ludwig, O. Lenz, B. Friedrich and F.A. Armstrong. Chem. Commun. (48), 5033-5035 (2006). [PDF]
  • “Rapid and Reversible Reactions of [NiFe]-Hydrogenases with Sulfide.” K.A. Vincent, N.A. Belsey, W. Lubitz and F.A. Armstrong. J. Am. Chem. Soc. 128(23), 7448-7449 (2006). [PDF]
  • “Electrochemical investigations of the interconversions between catalytic and inhibited states of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans.” A. Parkin, C. Cavazza, J.C. Fontecilla-Camps and F.A. Armstrong. J. Am. Chem. Soc. 128(51), 16808-16815 (2006). [PDF]
  • “A Proton Delivery Pathway in the Soluble Fumarate Reductase from Shewanella frigidimarina.” K.L. Pankhurst, C.G. Mowat, E.L. Rothery, J.M. Hudson, A.K. Jones, C.S. Miles, M.D. Walkinshaw, F.A. Armstrong, G.A. Reid and S.K. Chapman. J. Biol. Chem. 281(29), 20589-20597 (2006). [PDF]
  • “Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain.” E. Maklashina, T.M. Iverson, Y. Sher, V. Kotlyar, J. Andrell, O. Mirza, J.M. Hudson, F.A. Armstrong, R.A. Rothery, J.H. Weiner and G. Cecchini. J. Biol. Chem. 281(16), 11357-11365 (2006). [PDF]
  • “Application of Power Spectra Patterns in Fourier Transform Square Wave Voltammetry To Evaluate Electrode Kinetics of Surface-Confined Proteins.” B.D. Fleming, N.L. Barlow, J. Zhang, A.M. Bond and F.A. Armstrong. Anal. Chem. 78(9), 2948-2956 (2006). [PDF]
  • “The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies.” C.F. Blanford and F.A. Armstrong. J. Solid State Electr. 10(10), 826-832 (2006). [PDF]
  • Shriver and Atkins Inorganic Chemistry. 4 rev. ed. Oxford University Press: Oxford (2006). [Link]
  • 2005

  • “Electrochemical Definitions of O2 Sensitivity and Oxidative Inactivation in Hydrogenases.” K.A. Vincent, A. Parkin, O. Lenz, S.P.J. Albracht, J.C. Fontecilla-Camps, R. Cammack, B. Friedrich and F.A. Armstrong. J. Am. Chem. Soc. 127(51), 18179-18189 (2005). [PDF]
  • “Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology.” K.A. Vincent, J.A. Cracknell, A. Parkin and F.A. Armstrong. Dalton Transactions (21), 3397-3403 (2005). [PDF]
  • “Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels.” K.A. Vincent, J.A. Cracknell, O. Lenz, I. Zebger, B. Friedrich and F.A. Armstrong. Proc. Natl. Acad. Sci. USA 102(47), 16951-16954 (2005). [PDF]
  • “Investigating Metalloenzyme Reactions Using Electrochemical Sweeps and Steps: Fine Control and Measurements with Reactants Ranging from Ions to Gases.” K.A. Vincent and F.A. Armstrong. Inorg. Chem. 44(4), 798-809 (2005). [PDF]
  • “The Mechanism of Activation of a [NiFe]-Hydrogenase by Electrons, Hydrogen, and Carbon Monoxide.” S.E. Lamle, S.P.J. Albracht and F.A. Armstrong. J. Am. Chem. Soc. 127(18), 6595-6604 (2005). [PDF]
  • “Electron Transfer and Catalytic Control by the Iron-Sulfur Clusters in a Respiratory Enzyme, E. coli Fumarate Reductase.” J.M. Hudson, K. Heffron, V. Kotlyar, Y. Sher, E. Maklashina, G. Cecchini and F.A. Armstrong. J. Am. Chem. Soc. 127(19), 6977-6989 (2005). [PDF]
  • “[NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.” F.A. Armstrong and S.P.J. Albracht. Philos. T. Roy. Soc. A 363(1829), 937-954 (2005). [PDF]
  • “Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites.” F.A. Armstrong. Curr. Opin. Chem. Biol. 9(2), 110-117 (2005). [PDF]
  • 2004

  • “Electrochemical Potential-Step Investigations of the Aerobic Interconversions of [NiFe]-Hydrogenase from Allochromatium vinosum: Insights into the Puzzling Difference between Unready and Ready Oxidized Inactive States.” S.E. Lamle, S.P.J. Albracht and F.A. Armstrong. J. Am. Chem. Soc. 126(45), 14899-14909 (2004). [PDF]
  • “Electrochemical Studies of Arsenite Oxidase: An Unusual Example of a Highly Cooperative Two-Electron Molybdenum Center.” K.R. Hoke, N. Cobb, F.A. Armstrong and R. Hille. Biochemistry 43(6), 1667-1674 (2004). [PDF]
  • “Voltammetric Studies of the Catalytic Mechanism of the Respiratory Nitrate Reductase from Escherichia coli: How Nitrate Reduction and Inhibition Depend on the Oxidation State of the Active Site.” S.J. Elliott, K.R. Hoke, K. Heffron, M. Palak, R.A. Rothery, J.H. Weiner and F.A. Armstrong. Biochemistry 43(3), 799-807 (2004). [PDF]
  • “Fast, long-range electron-transfer reactions of a 'blue' copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer.” F.A. Armstrong, N.L. Barlow, P.L. Burn, K.R. Hoke, L.J.C. Jeuken, C. Shenton and G.R. Webster. Chem. Commun. (3), 316-317 (2004). [PDF]
  • “Hydrogenases: active site puzzles and progress.” F.A. Armstrong. Curr. Opin. Chem. Biol. 8(2), 133-140 (2004). [PDF]
  • “A note from the president.” F. Armstrong. J. Biol. Inorg. Chem. 9(6), 788-789 (2004). [PDF]
  • 2003

  • “Instantaneous, stoichiometric generation of powerfully reducing states of protein active sites using Eu(II) and polyaminocarboxylate ligands.” K.A. Vincent, G.J. Tilley, N.C. Quammie, I. Streeter, B.K. Burgess, M.R. Cheesman and F.A. Armstrong. Chem. Commun. (20), 2590-2591 (2003). [PDF]
  • “Enzyme Electrokinetics: Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms.” C. Leger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones and F.A. Armstrong. Biochemistry 42(29), 8653-8662 (2003). [PDF]
  • “Hydrogenase on an electrode: a remarkable heterogeneous catalyst.” S.E. Lamle, K.A. Vincent, L.M. Halliwell, S.P.J. Albracht and F.A. Armstrong. Dalton Transactions (21), 4152-4157 (2003). [PDF]
  • “Enzyme Electrokinetics: Electrochemical Studies of the Anaerobic Interconversions between Active and Inactive States of Allochromatium vinosum [NiFe]-hydrogenase.” A.K. Jones, S.E. Lamle, H.R. Pershad, K.A. Vincent, S.P.J. Albracht and F.A. Armstrong. J. Am. Chem. Soc. 125(28), 8505-8514 (2003). [PDF]
  • “Mechanisms of Redox-Coupled Proton Transfer in Proteins: Role of the Proximal Proline in Reactions of the [3Fe-4S] Cluster in Azotobacter vinelandii Ferredoxin I.” R. Camba, Y.-S. Jung, L.M. Hunsicker-Wang, B.K. Burgess, C.D. Stout, J. Hirst and F.A. Armstrong. Biochemistry 42(36), 10589-10599 (2003). [PDF]
  • “Voltammetry of a ‘protein on a rope’.” F. Baymann, N.L. Barlow, C. Aubert, B. Schoepp-Cothenet, G. Leroy and F.A. Armstrong. FEBS Lett. 539(1-3), 91-94 (2003). [PDF]
  • 2002

  • “Substitution of the imidazole ring of His61 in flavocytochrome c3, the soluble fumarate reductase from Shewanella frigidimarina.” E.L. Rothery, K.L. Pankhurst, C.G. Mowat, S.K. Chapman, C.G. Mowat, C.S. Miles, G.A. Reid and F.A. Armstrong. Flavins and Flavoproteins 2002, Proceedings of the International Symposium, 14th, Cambridge, United Kingdom, July 14-18, 2002, 789-794 (2002).
  • “Enzyme Electrokinetics: Hydrogen Evolution and Oxidation by Allochromatium vinosum [NiFe]-Hydrogenase.” C. Leger, A.K. Jones, W. Roseboom, S.P.J. Albracht and F.A. Armstrong. Biochemistry 41(52), 15736-15746 (2002). [PDF]
  • “Effect of a Dispersion of Interfacial Electron Transfer Rates on Steady State Catalytic Electron Transport in [NiFe]-hydrogenase and Other Enzymes.” C. Leger, A.K. Jones, S.P.J. Albracht and F.A. Armstrong. J. Phys. Chem. B 106(50), 13058-13063 (2002). [PDF]
  • “Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst.” A.K. Jones, E. Sillery, S.P.J. Albracht and F.A. Armstrong. Chem. Commun. (8), 866-867 (2002). [PDF]
  • “The kinetics of a weakly electron-coupled proton transfer in azurin.” L.J.C. Jeuken, L.-J. Wisson and F.A. Armstrong. Inorg. Chim. Acta 331, 216-223 (2002). [PDF]
  • “Insights into Gated Electron-Transfer Kinetics at the Electrode-Protein Interface: A Square Wave Voltammetry Study of the Blue Copper Protein Azurin.” L.J.C. Jeuken, J.P. McEvoy and F.A. Armstrong. J. Phys. Chem. B 106(9), 2304-2313 (2002). [PDF]
  • “Electron-Transfer Mechanisms through Biological Redox Chains in Multicenter Enzymes.” L.J.C. Jeuken, A.K. Jones, S.K. Chapman, G. Cecchini and F.A. Armstrong. J. Am. Chem. Soc. 124(20), 5702-5713 (2002). [PDF]
  • “The pH-dependent redox inactivation of amicyanin from Paracoccus versutus as studied by rapid protein-film voltammetry.” L.J.C. Jeuken, R. Camba, F.A. Armstrong and G.W. Canters. J. Biol. Inorg. Chem. 7(1-2), 94-100 (2002). [PDF]
  • “Voltammetric examination and resuscitation of a defective mutant fumarate reductase.” J.M. Hudson, K. Heffron, F.A. Armstrong, G. Cecchini, C.S. Miles, G.A. Reid, E.L. Rothery and S.K. Chapman. Flavins and Flavoproteins 2002, Proceedings of the International Symposium, 14th, Cambridge, United Kingdom, July 14-18, 2002, 773-778 (2002).
  • “A Voltammetric Study of Interdomain Electron Transfer within Sulfite Oxidase.” S.J. Elliott, A.E. McElhaney, C. Feng, J.H. Enemark and F.A. Armstrong. J. Am. Chem. Soc. 124(39), 11612-11613 (2002). [PDF]
  • “Detection and interpretation of redox potential optima in the catalytic activity of enzymes.” S.J. Elliott, C. Leger, H.R. Pershad, J. Hirst, K. Heffron, N. Ginet, F. Blasco, R.A. Rothery, J.H. Weiner and F.A. Armstrong. BBA-Bioenergetics 1555(1-3), 54-59 (2002). [PDF]
  • Azotobacter vinelandii ferredoxin I: a sequence and structure comparison approach to alteration of [4Fe-4S]2+/+ reduction potential.” K. Chen, Y.-S. Jung, C.A. Bonagura, G.J. Tilley, G.S. Prasad, V. Sridhar, F.A. Armstrong, C.D. Stout and B.K. Burgess. J. Biol. Chem. 277(7), 5603-5610 (2002). [PDF]
  • “Crystal structures of ferredoxin variants exhibiting large changes in [Fe-S] reduction potential.” K. Chen, C.A. Bonagura, G.J. Tilley, J.P. McEvoy, Y.-S. Jung, F.A. Armstrong, C.D. Stout and B.K. Burgess. Nat. Struct. Biol. 9(3), 188-192 (2002). [PDF]
  • “Protein film voltammetry: revealing the mechanisms of biological oxidation and reduction.” F.A. Armstrong. Russ. J. Electrochem. 38(1), 49-62 (2002). [PDF]
  • “Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions.” F.A. Armstrong. J. Chem. Soc. Dalton (5), 661-671 (2002). [PDF]
  • “Voltammetric investigations of iron-sulfur clusters in proteins.” F.A. Armstrong. In Electroanalytical Methods for Biological Materials. A. Brajter-Toth and J.Q. Chambers, eds. Marcel Dekker: Basel, Switzerland (2002). [Link]
  • “Voltammetry of proteins.” F.A. Armstrong. In Encyclopedia of Electrochemistry Vol. 9. A.J. Bard, M. Stratmann and G.S. Wilson, eds. Wiley VCH: Weinheim (2002). [Link]
  • 2001

  • “Influence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage.” G.J. Tilley, R. Camba, B.K. Burgess and F.A. Armstrong. Biochem. J. 360(3), 717-726 (2001). [Link]
  • “Enzyme electrokinetics: Energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase.” C. Leger, K. Heffron, H.R. Pershad, E. Maklashina, C. Luna-Chavez, G. Cecchini, B.A.C. Ackrell and F.A. Armstrong. Biochemistry 40(37), 11234-11245 (2001). [PDF]
  • “Electrochemical Origin of Hysteresis in the Electron-Transfer Reactions of Adsorbed Proteins: Contrasting Behavior of the ‘Blue’ Copper Protein, Azurin, Adsorbed on Pyrolytic Graphite and Modified Gold Electrodes.” L.J.C. Jeuken and F.A. Armstrong. J. Phys. Chem. B 105(22), 5271-5282 (2001). [PDF]
  • “Determination of an Optimal Potential Window for Catalysis by E. coli Dimethyl Sulfoxide Reductase and Hypothesis on the Role of Mo(V) in the Reaction Pathway.” K. Heffron, C. Leger, R.A. Rothery, J.H. Weiner and F.A. Armstrong. Biochemistry 40(10), 3117-3126 (2001). [PDF]
  • “A Distal Histidine Mutant (H52Q) of Yeast Cytochrome c Peroxidase Catalyzes the Oxidation of H2O2 Instead of Its Reduction.” L. Bateman, C. Leger, D.B. Goodin and F.A. Armstrong. J. Am. Chem. Soc. 123(38), 9260-9263 (2001). [PDF]
  • 2000

  • “Structure of C42D Azotobacter vinelandii FdI. A Cys-X-X-Asp-X-X-Cys motif ligates an air-stable [4Fe-4S]2+/+ cluster.” Y.-S. Jung, C.A. Bonagura, G.J. Tilley, H.S. Gao-Sheridan, F.A. Armstrong, C.D. Stout and B.K. Burgess. J. Biol. Chem. 275(47), 36974-36983 (2000). [PDF]
  • “Interruption and Time-Resolution of Catalysis by a Flavoenzyme Using Fast Scan Protein Film Voltammetry.” A.K. Jones, R. Camba, G.A. Reid, S.K. Chapman and F.A. Armstrong. J. Am. Chem. Soc. 122(27), 6494-6495 (2000). [PDF]
  • “Role of the Surface-Exposed and Copper-Coordinating Histidine in Blue Copper Proteins: The Electron-Transfer and Redox-Coupled Ligand Binding Properties of His117Gly Azurin.” L.J.C. Jeuken, P. van Vliet, M.P. Verbeet, R. Camba, J.P. McEvoy, F.A. Armstrong and G.W. Canters. J. Am. Chem. Soc. 122(49), 12186-12194 (2000). [PDF]
  • “The effect of selected complex carbohydrates on intestinal tumour risk in Min mice.” C.A. Higgins, J. Coaker, F. Armstrong and J.C. Mathers. Special Publication - Royal Society of Chemistry 255(Dietary Anticarcinogens and Antimutagens), 358-360 (2000). [Link]
  • “Atomically defined mechanism for proton transfer to a buried redox center in a protein.” K. Chen, J. Hirst, R. Camba, C.A. Bonagura, C.D. Stout, B.K. Burgess and F.A. Armstrong. Nature 405(6788), 814-817 (2000). [PDF]
  • “The effect of pH and ligand exchange on the redox properties of blue copper proteins.” G.W. Canters, U. Kolczak, F. Armstrong, L.J.C. Jeuken, R. Camba and M. Sola. Faraday Discuss. 116(Bioelectrochemistry), 205-220 (2000). [PDF]
  • “Investigations of the Oxidative Disassembly of Fe-S Clusters in Clostridium pasteurianum 8Fe Ferredoxin Using Pulsed-Protein-Film Voltammetry.” R. Camba and F.A. Armstrong. Biochemistry 39(34), 10587-10598 (2000). [PDF]
  • “Ferredoxin III of Desulfovibrio africanus: sequencing of the native gene and characterization of a histidine-tagged form.” J.L.H. Busch, J.L. Breton, S.L. Davy, R. James, G.R. Moore, F.A. Armstrong and A.J. Thomson. Biochem. J. 346(2), 375-384 (2000). [Link]
  • “Unusual Spectroscopic and Electrochemical Properties of the 2[4Fe-4S] Ferredoxin of Thauera aromatica.” M. Boll, G. Fuchs, G. Tilley, F.A. Armstrong and D.J. Lowe. Biochemistry 39(16), 4929-4938 (2000). [PDF]
  • “Recent developments in faradaic bioelectrochemistry.” F.A. Armstrong and G.S. Wilson. Electrochim. Acta 45(15-16), 2623-2645 (2000). [PDF]
  • “Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins.” F.A. Armstrong, R. Camba, H.A. Heering, J. Hirst, L.J.C. Jeuken, A.K. Jones, C. Leger and J.P. McEvoy. Faraday Discuss. 116(Bioelectrochemistry), 191-203 (2000). [PDF]
  • 1999

  • “Redox Properties of Flavocytochrome c3 from Shewanella frigidimarina NCIMB400.” K.L. Turner, M.K. Doherty, H.A. Heering, F.A. Armstrong, G.A. Reid and S.K. Chapman. Biochemistry 38(11), 3302-3309 (1999). [PDF]
  • “Voltammetric studies of bidirectional catalytic electron transport in Escherichia coli succinate dehydrogenase: comparison with the enzyme from beef heart mitochondria.” H.R. Pershad, J. Hirst, B. Cochran, B.A.C. Ackrell and F.A. Armstrong. BBA-Bioenergetics 1412(3), 262-272 (1999). [PDF]
  • “Catalytic Electron Transport in Chromatium vinosum [NiFe]-Hydrogenase: Application of Voltammetry in Detecting Redox-Active Centers and Establishing That Hydrogen Oxidation Is Very Fast Even at Potentials Close to the Reversible H+/H2 Value.” H.R. Pershad, J.L.C. Duff, H.A. Heering, E.C. Duin, S.P.J. Albracht and F.A. Armstrong. Biochemistry 38(28), 8992-8999 (1999). [PDF]
  • “Protein film cryovoltammetry: demonstrations with a 7Fe ([3Fe-4S] +[4Fe-4S]) ferredoxin.” J.P. McEvoy and F.A. Armstrong. Chem. Commun. (17), 1635-1636 (1999). [PDF]
  • “Using the Pulsed Nature of Staircase Cyclic Voltammetry To Determine Interfacial Electron-Transfer Rates of Adsorbed Species.” H.A. Heering, M.S. Mondal and F.A. Armstrong. Anal. Chem. 71(1), 174-182 (1999). [PDF]
  • “Alteration of the reduction potential of the [4Fe-4S]2+/+ cluster of Azotobacter vinelandii ferredoxin I.” K. Chen, G.J. Tilley, V. Sridhar, G.S. Prasad, C.D. Stout, F.A. Armstrong and B.K. Burgess. J. Biol. Chem. 274(51), 36479-36487 (1999). [Link]
  • “Thermodynamic influences on the fidelity of iron-sulfur cluster formation in proteins.” F.A. Armstrong and R.J.P. Williams. FEBS Lett. 451(2), 91-94 (1999). [PDF]
  • “Electron transfer and coupled processes in protein film voltammetry.” F.A. Armstrong. Biochem. Soc. T. 27(2), 206-210 (1999). [Link]
  • 1998

  • “Simultaneous Voltammetric Comparisons of Reduction Potentials, Reactivities, and Stabilities of the High-Potential Catalytic States of Wild-Type and Distal-Pocket Mutant (W51F) Yeast Cytochrome c Peroxidase.” M.S. Mondal, D.B. Goodin and F.A. Armstrong. J. Am. Chem. Soc. 120(25), 6270-6276 (1998). [PDF]
  • “ΔT14/ΔD15 Azotobacter vinelandii Ferredoxin I: Creation of a New CysXXCysXXCys Motif That Ligates a [4Fe-4S] Cluster.” M.A. Kemper, H.S. Gao-Sheridan, B. Shen, J.L.C. Duff, G.J. Tilley, F.A. Armstrong and B.K. Burgess. Biochemistry 37(37), 12829-12837 (1998). [PDF]
  • “Very Rapid, Cooperative Two-Electron/Two-Proton Redox Reactions of [3Fe-4S] Clusters: Detection and Analysis by Protein-Film Voltammetry.” J. Hirst, G.N.L. Jameson, J.W.A. Allen and F.A. Armstrong. J. Am. Chem. Soc. 120(46), 11994-11999 (1998). [PDF]
  • “Kinetics and mechanism of redox-coupled, long-range proton transfer in an iron-sulfur protein. Investigation by fast-scan protein-film voltammetry.” J. Hirst, J.L.C. Duff, G.N.L. Jameson, M.A. Kemper, B.K. Burgess and F.A. Armstrong. J. Am. Chem. Soc. 120(28), 7085-7094 (1998). [PDF]
  • “Fast-Scan Cyclic Voltammetry of Protein Films on Pyrolytic Graphite Edge Electrodes: Characteristics of Electron Exchange.” J. Hirst and F.A. Armstrong. Anal. Chem. 70(23), 5062-5071 (1998). [PDF]
  • “Interpreting the Catalytic Voltammetry of Electroactive Enzymes Adsorbed on Electrodes.” H.A. Heering, J. Hirst and F.A. Armstrong. J. Phys. Chem. B 102(35), 6889-6902 (1998). [PDF]
  • “Discovery of a novel ferredoxin from Azotobacter vinelandii containing two [4Fe-4S] clusters with widely differing and very negative reduction potentials.” H.S. Gao-Sheridan, H.R. Pershad, F.A. Armstrong and B.K. Burgess. J. Biol. Chem. 273(10), 5514-5519 (1998). [Link]
  • “A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe-4S]0 to [4Fe-4S]2+ conversion in vitro but not in vivo.” H.S. Gao-Sheridan, M.A. Kemper, R. Khayat, G.J. Tilley, F.A. Armstrong, V. Sridhar, G.S. Prasad, C.D. Stout and B.K. Burgess. J. Biol. Chem. 273(50), 33692-33701 (1998). [Link]
  • “Voltammetric studies of the reactions of iron-sulfur clusters ([3Fe-4S] or [M3Fe-4S]) formed in Pyrococcus furiosus ferredoxin.” S.E.J. Fawcett, D. Davis, J.L. Breton, A.J. Thomson and F.A. Armstrong. Biochem. J. 335(2), 357-368 (1998). [Link]
  • 1997

  • “Y13C Azotobacter vinelandii ferredoxin I. A designed [Fe-S] ligand motif contains a cysteine persulfate.” M.A. Kemper, C.D. Stout, S.E.J. Lloyd, G.S. Prasad, S. Fawcett, F.A. Armstrong, B. Shen and B.K. Burgess. J. Biol. Chem. 272(25), 15620-15627 (1997). [Link]
  • “Global Observation on Hydrogen/Deuterium Isotope Effects on Bidirectional Catalytic Electron Transport in an Enzyme: Direct Measurement by Protein-Film Voltammetry.” J. Hirst, B.A.C. Ackrell and F.A. Armstrong. J. Am. Chem. Soc. 119(32), 7434-7439 (1997). [PDF]
  • “Direct Detection and Measurement of Electron Relays in a Multicentered Enzyme: Voltammetry of Electrode-Surface Films of E. coli Fumarate Reductase, an Iron-Sulfur Flavoprotein.” H.A. Heering, J.H. Weiner and F.A. Armstrong. J. Am. Chem. Soc. 119(48), 11628-11638 (1997). [PDF]
  • “Electrochemical Potential and pH Dependences of [3Fe-4S] mr [M3Fe-4S] Cluster Transformations (M = Fe, Zn, Co, and Cd) in Ferredoxin III from Desulfovibrio africanus and Detection of a Cluster with M = Pb.” J.N. Butt, S.E.J. Fawcett, J. Breton, A.J. Thomson and F.A. Armstrong. J. Am. Chem. Soc. 119(41), 9729-9737 (1997). [PDF]
  • “[3Fe-4S] ⇌ [4Fe-4S] cluster interconversion in Desulfovibrio africanus ferredoxin III: properties of an Asp14 → Cys mutant.” J.L.H. Busch, J.L. Breton, B.M. Bartlett, F.A. Armstrong, R. James and A.J. Thomson. Biochem. J. 323(1), 95-102 (1997). [Link]
  • “Reactions of complex metalloproteins studied by protein-film voltammetry.” F.A. Armstrong, H.A. Heering and J. Hirst. Chem. Soc. Rev. 26(3), 169-179 (1997). [PDF]
  • “Evaluations of reduction potential data in relation to coupling, kinetics and function.” F.A. Armstrong. J. Biol. Inorg. Chem. 2(1), 139-142 (1997). [PDF]
  • “Applications of voltammetric methods for probing the chemistry of redox proteins.” F.A. Armstrong. In Bioelectrochemistry: Principles and Practice Vol. 5. G. Lenaz and G. Milazzo, eds. Birkhauser Verlag AG: Basel, Switzerland (1997). [Link]
  • 1996

  • “Control of myoglobin electron-transfer rates by the distal (nonbound) histidine residue.” B.R. Van Dyke, P. Saltman and F.A. Armstrong. J. Am. Chem. Soc. 118(14), 3490-3492 (1996). [PDF]
  • “Direct Measurement of the Reduction Potential of Catalytically Active Cytochrome c Peroxidase Compound I: Voltammetric Detection of a Reversible, Cooperative Two-Electron Transfer Reaction.” M.S. Mondal, H.A. Fuller and F.A. Armstrong. J. Am. Chem. Soc. 118(1), 263-264 (1996). [PDF]
  • “Electrocatalytic Voltammetry of Succinate Dehydrogenase: Direct Quantification of the Catalytic Properties of a Complex Electron-Transport Enzyme.” J. Hirst, A. Sucheta, B.A.C. Ackrell and F.A. Armstrong. J. Am. Chem. Soc. 118(21), 5031-5038 (1996). [PDF]
  • “Novel Redox Chemistry of [3Fe-4S] Clusters: Electrochemical Characterization of the All-Fe(II) Form of the [3Fe-4S] Cluster Generated Reversibly in Various Proteins and Its Spectroscopic Investigation in Sulfolobus acidocaldarius Ferredoxin.” J.L.C. Duff, J.L.J. Breton, J.N. Butt, F.A. Armstrong and A.J. Thomson. J. Am. Chem. Soc. 118(36), 8593-8603 (1996). [PDF]
  • 1995

  • “Identification of the iron-sulfur clusters in a ferredoxin from the archaeon Sulfolobus acidocaldarius. Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic properties.” J.L. Breton, J.L.C. Duff, J.N. Butt, F.A. Armstrong, S.J. George, Y. Petillot, E. Forest, G. Schaefer and A.J. Thomson. Eur. J. Biochem. 233(3), 937-946 (1995). [Link]
  • 1994

  • Azotobacter vinelandii ferredoxin I. Alteration of individual surface charges and the [4Fe-4S]2+/+ cluster reduction potential.” B. Shen, D.R. Jollie, C.D. Stout, T.C. Diller, F.A. Armstrong, C.M. Gorst, G.N. La Mar, P.J. Stephens and B.K. Burgess. J. Biol. Chem. 269(11), 8564-8575 (1994). [Link]
  • “Selective block by a-dendrotoxin of the K+ inward rectifier at the Vicia guard cell plasma membrane.” G. Obermeyer, F. Armstrong and M.R. Blatt. J. Membrane Biol. 137(3), 249-259 (1994). [PDF]
  • “Formation and properties of a stable high-potential copper-iron-sulfur cluster in a ferredoxin.” J.N. Butt, J. Niles, F.A. Armstrong, J. Breton and A.J. Thomson. Nat. Struct. Biol. 1(7), 427-433 (1994). [PDF]